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Synopsis 

Viscoelastic data obtained on the polyblends described in the previous two papers together 
with some new data have been correlated with various theories derived for the viscosity and con- 
tinuum properties of polycomposites, to gain insight into the nature of compatible domain inter- 
actions. Unmodified theories of Mooney, Eilers and Van Dyck, Guth and Smallwood, and Ker- 
ner did not correlate with the observed viscoelastic data. However, when the Kerner relation 
was substantially altered (after allowing for phase inversion following procedures of Halpin and 
Tsai as modified by Nielsen), an adequate description of torsional modulus behavior at ambient 
temperature was obtained. To characterize tensile modulus (loo%), however, a new expression 
was necessary. Both procedures invoked a critical modulus for the blend with respect to compo- 
sition at  which phase inversion was initiated. The critical volume fraction associated with this 
modulus increased inversely with the Tg of the filler; when the filler Tg was below the ambient 
temperature, the blends behaved as mixed rubbers, and torsional modulus ratios followed the 
lower Kerner relation a t  all blend compositions. It was concluded that polyblends having iso- 
chronal modulus-temperature curves that shift with composition over the temperature scale yet 
are anomalously broad as in the present work should be classified as systems exhibiting restrict- 
ed molecular mixing. The restricted molecular mixing character exhibited by the polyblends 
could be explained by a plurality of mixed-phase responses to deformation produced in a mor- 
phology of interlocking microdispersions. Favorable polarity effects and high filler ductility 
were considered responsible for the domain interactions. No evidence was found for true molec- 
ular compatibility in the blends. An analysis of temperature effects on the blend viscoelasticity 
resulted in a temperature analog of the composition behavior. 

INTRODUCTION 

The two previous papers'p2 have presented data on the mechanical and vis- 
coelastic properties of polyblends of several elastomeric butadiene-acryloni- 
trile copolymers with polymeric fillers whose properties were, in turn, modi- 
fied by plasticization. Mechanical properties were obtained at  room temper- 
ature in the first paper and over a wide temperature range in the second. In 
this paper, the available and some additional data will be correlated with sev- 
eral modified theories describing viscosity and continuum properties of poly- 
composites. To accomplish this, the effect was studied of a complete range 
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of inclusion volume fractions on composite moduli a t  ambient temperatures. 
T o  provide this range, new polyblends were prepared especially for this work. 
These yielded more mechanical data a t  high filler contents where presumably 
elastomeric phase continuity had been i n ~ e r t e d . ~ - ~  The volume fraction of 
filler needed to produce phase inversion was expected to be a function of both 
blend composition and plasticizer content of the particulate filler. Conse- 
quently, the wide ranging variation of moduli with blend type and composi- 
tion obtained in this work should provide much greater insight on the factors 
contributing to mechanical compatibility.6-12 Mechanical compatibility was 
observed for the polyblends in the first two papers,'y2 but results of thermal 
analysis disputed this observation. However, the existence of compatibility 
was restricted in these papers either to systems of mixed elastomers a t  ambi- 
ent temperature or to blends where the soft phase was largely continuous. 
Because the blend moduli were functions of both plasticizer content and tem- 
perature, the effect of the latter will also be qualitatively treated in this work. 

EXPERIMENTAL 

The polyblends of this paper were prepared and their mechanical and vis- 
coelastic properties determined by reported Literature values 
of the densities of polybutadiene and polyacrylonitrile were used to compute 
densities for the copolymers by assuming additivity of volumes. Densities of 
polytvinyl stearate) and poly(viny1 chloride) were computed by the group ad- 
ditivity method of Van Krevelin;13 the densities of the copolymers were then 
estimated by the procedures used for the nitrile rubbers. By using literature 
values of density for DOP and the calculated density for PVC, the densities 
of the DOP-PVC mixtures were estimated. From the known weight fraction 
of the blends and the densities of the blend components, volume fractions 
were then computed. No attempt was made to estimate the volume fraction 
of the dispersed phase by assuming that a portion of the continuous phase 
was present as an entrapped contaminant.14J5 Most of the computations of 
this paper were done with an IBM 1130 computer. 

RESULTS AND DISCUSSION 

Compositions, tensile properties, viscoelastic properties, and modulus ra- 
tios are listed in Table I for new polyblends having decreased NBR content. 
These were introduced to provide greater detail to mechanical properties in 
the higher filler composition region, where the rigid phase was expected to be 
largely continu0us.~-5 The new data were concentrated on two polyblend 
systems using Hycar 1411. These were selected to be representative of the 
blended systems having the highest filler moduli. Because much of the fol- 
lowing discussion will concern blends of lower filler content, data previously 
reportedly2 on such systems were reproduced here for convenience. In addi- 
tion, a good deal of the data evaluated will come from the two previous pa- 
pers. Modulus ratios, considered in this paper for the first time, are defined 
as follows: unless otherwise designated, E/E1 is the ratio of the 100% modu- 
lus' of the polyblend to that of the sbrting elastomer; Et/Etl is the ratio of 
the torsional modulus of the polyblend at  room temperature, Et230,' to the 
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same modulus for the elastomer. As before, w is the weight fraction, while 
subscripts 1 and 2 designate elastomer and filler, respectively. Volume fraq 
tions were designated u; these were estimated by the procedure given in the 
experimental section. Copolymers used as fillers are sometimes given the 
shorthand notation exemplified by VS (0.207) VC1. This designates a co- 
polymer of vinyl stearate and vinyl chloride containing 21 w-% of vinyl stea- 
rate (5 mole-%). 

An examination of the data for the PVC-filled systems in Table I shows 
that the mechanical properties of the polyblends containing relatively small 
amounts of NBR (experiments 1-5) somewhat resembled those of tough im- 
pact materials6Y8J6l8 in having high initial modulus but substantial elonga- 
tion. Even Ti of these blends did not appear to shift substantially with com- 
position. This suggests that the polyvinyl component was the continuous 
phase in these systems. Consequently, these appeared to show more parallel 
mixing response, based on Takanagi  model^,^ compared to previous systems 
where series response seemed to p r e d ~ m i n a t e . ~ ~ ? ~ ~  A t  higher NBR contents, 
the properties resembled those of plasticized systems, as was discussed exten- 
sively in the previous paper.2 The same mixing behavior did not seem to be 
present in the polyblends containing vinyl stearate copolymers (experiments 
13-18), however. Clearly, as composition changed, there appeared to be a 
transition from mechanically incompatible systems to compatible systems in 
the first series but not in the second. A detailed investigation of these 
trends, and others not anticipated above, will be pursued in the sections that 
follow. 

Hard Dispersions in a Liquid Matrix 

For a dispersion of hard spheres in a liquid or rubber-like matrix, Moo- 

(1) 

where k, is the Einstein coefficient with the value of 2.5 for dispersed 
spheres, u2 is the volume fraction of filler, and urn is a sedimenting volume de- 
fined as the critical maximum volumetric packing fraction above which the 
available liquid is no longer able to wet the filler properly because of its tight 
packing. This condition heralds phase inversion. Equation (1) applies only 
when Poisson’s ratio Y for the matrix is 0.5, i.e., when a hard filler is dispersed 
in a soft rubber-like matrix. Under these conditions, 7/71 = E/E1 = Et/Et1.22 

An equation similar to the Mooney equatibn is that of Eilers and Van 
D y ~ k ~ ~ :  

(2) 

where Ei are Young’s moduli and where, according to 2k will be 
approximately equal to ke (the Einstein coefficient), while S’ = 1hm. This 
equation is also limited to systems where Y = 0.5. 

The best-known equation is that of G ~ t h ~ ~  and Smallwood.26 This equa- 
tion, however, is of limited utility, being accurate only for a few systems and 
then only to u2 N 0.3. The equation is 

E/E1 = 1.0 + k e ~ 2  + 14.1 ( ~ 2 ) ~  (3) 

ney21 developed the relation 

In 7/71 = keu2/[1 - (udurn)]  

E/E1 = [l + ( k ~ 2 / l  - S ’ U ~ ) ] ~  
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All of these equations suffer from being applicable only when u = 0.5 and, 
therefore, useful only in describing reinforcement of rubber. The equation of 
K e r r ~ e r , ~ ~  which assumes a specific morphology, is more versatile in providing 
an approximate method for calculating the elastic moduli of both elastomers 
filled by rigid inclusions and rigid matrices filled by soft inclusions. On the 
other hand, the more exact and more general treatment of Hashin and 
Shtrikman,28*29 based on variational pr inc ip le~ ,3~.~~ is independent of phase 
morphology but leads to bounds. However, for binary component polycom- 
posites, the Hashin-Shtrikman limiting highest lower bound and lowest high- 
er bound are algebraically identical to single-valued Kerner expressions for, 
respectively, filled elastomers and rigid matrixes containing soft inclusions. 
Thus, the general form of the Kerner equation, for spheres embedded in a 
matrix, is 

While this equation was originally derived for shear modulus, it is equally ap- 
p l i ~ a b l e ~ ~ ? ~ ~  to other moduli, such as Young’s E or torsional Et of this work. 

For a soft dispersed phase in a rigid matrix, eq. (4) can be simplified to 

E1/E = 1.0 + (Uz/U1)[15(1 - Y1)/(7 - 5~1)] (5) 

where v1 = 0.2 to 0.5. This is, therefore, the lowest upper bound of the 
Hashin-Shtrikman relation. It expresses the upper limiting condition of the 
modulus ratio for the stated morphology. Most experimental moduli will fall 
below this bound. 

The highest lower bound of the Hashin-Shtrikman equation, again of Ker- 
ner form, expressing the limiting case of a hard dispersed phase in a soft ma- 
trix, is 

E/E1 = 1 + (U2/U1)[15(1 - ~1)/(8 - 10~1)] (6) 

Because of its limiting nature, experimental modulus ratios for real systems 
should lie above this bound. A general defect of the majority of these equa- 
tions is that they consider only one phase geometry. Exceptions are the gen- 
eral equations of Hashin-Shtrikman which are not limited to specific geome- 
try or number of phase components.28~29 The rest, eqs. (1)-(6), are all limit- 
ed to a dispersion of spheres in either a soft or hard matrix and assume per- 
fect adhesion between the components; the irregular and aggregated mor- 

characteristic of real polycomposites can lead to results 
not predicted by the various theories. 

Figure 1 compares the theoretical expressions with experimental data (cir- 
cles) for various polycomposites. Relations are between torsional modulus 
ratios at  23OC and the volume fraction of polymeric filler, UZ. The maximum 
packing volume u, (described below) used instead of urn in the Mooney and 
Eilers and Van Dyck expressions, eqs. (1) and (2), were 0.413 in insert A and 
0.667 in insert B. It is apparent that none of these expressions described the 
experimental data for any present polycomposite, at  least for any sustained 
range of u2. The use of an experimentally determined urn in the Mooney or 
Van Dyck expression would have achieved a better fit of the curves up to urn. 
However, a fit over all u:! would not be possible by the limiting nature of these 
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Fig. 1. Comparison of torsional modulus ratios EtIEt1 vs. volume fraction of polymeric filler, 
u2 ,  for selected experimental polyblends (circles) with several theoretical equations. Relations 
are: solid line, Mooney equation, eq. (1); dashed line in (A), (B), and (C), equation of Eilers and 
Van Dyck, eq. (2); broken line, equation of Guth and Smallwood, eq. (3); dashed lines in (D), 
upper and lower curves calculated using the Kerner equations, eqs. (5) and (6). The polymeric 
fillers used were: (A) and (D), PVC; (B), VS (0.207) VCI; (C), VS (0.356) VCI. Poisson’s ratio 
for the upper bound of the Kerner equation was assumed to be 0.3. Critical volume fractions 
(Mooney and Eilers and Van Dyck) are from Table 111. 

0 

Fig. 2. Relation between tensile modulus ratio In (EIE1) and volume fraction of polymeric fill- 
er, u2, in polyblends employing Hycar 1411. The polymeric filler was PVC (A) and copolymers 
of vinyl stearate and vinyl chloride containing vinyl stearate weight fractions of 0.207 (B), 0.356 
(C), and 0.467 (D). Solid lines are eq. (7); dashed lines are eq. (10). 



POLYBLENDS 2763 

8 I I I I 

A 

- W . - 8 ~ ~ ~  6 

w 4  
c 

-t 

2 

0 
0 0 2  0 4  06 08 10 0 0 2  0 4  06 08 10 

v2 v2 

Fig. 3. Relation between tensile modulus ratio In (EIE1) and volume fraction of polymeric fill- 
er, u2, in polyblends employing Hycar 1411 (A), Hycar 1452P-50 (B) and (C), and AN 25, unvul- 
canized (D). The polymeric filler was DOP (0.207) PVC (A), PVC (B), and VS (0.207) VCl (C) 
and (D). Solid lines are eq. (7); dashed lines are eq. (10). 

equations, which fail at  urn. The fact that uc and urn do not coincide will be 
seen to be significant as u, is discussed in the sections below. In view of in- 
sert D, the experimental data resemble more the quantities produced by 
mixed contributions from each phase, a t  least over much of the experimental 
range of filler volume fractions. The discussion of the balance of this paper 
will be primarily concerned with a more careful examination of these mixed 
contributions to modulus. 

The Tension Modulus Ratio E/E1 

Typical data for the tension modulus ratios EIE1 as a function of the vol- 
ume fraction of filler u2 are shown in Figures 2 and 3. The relation for the 
linear portion of the data (solid line in the figure) is 

TABLE I1 
Values of the Constant k of Eq. (7)  

Polyblend system Oa 0.207a 0.356a 0.467a 

VS-VCl, HY 1411 6.19 3.99 2.69 1.91 
DOP-PVC, HY 1411 3.82 2.59 1.63 
VS-VCl, HY 1452P-50 7.31 4.49 3.29 2.79 
DOP-PVC, HY 1452P-50 4.50 3.45 2.45 
VS-VCl, A N  25, uncured 6.48 4.77 2.41 2.79 
VS-VCl, AN 25, cured 4.42 2.48 1.76 1.31 

a Weight fraction of plasticizer in the starting copolymer or mixture. 
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In E/E1 = ku2 (7) 

where k N In (Ez/E1) in Figure 2, inserts C and D, and Figure 3, insert A. 
Equation (7) described all blend data having Ti below room temperature (see 
Table I and data in the previous two papers1Y2). Computer values of k, with 
the intercept forced through zero, for all of the polyblend systems studied in 
this investigation192 are listed in Table 11. The constant k decreased as the 
plasticizer content of the filler increased in all systems. Systems using Hycar 
1452P-50 have larger values of k than those using Hycar 1411, because El is 
smaller for the former system (i.e., E2/E1 N k increases). Surprisingly, vul- 
canization lowered k compared to unvulcanized blends; cured systems at  any 
uz were, therefore, softer though possessing higher tensile strengths.' In gen- 
eral, the magnitudes of k values were similar and decreased as free volume in- 
creased with increase in plasticizer content, in line with a lower E/Ex at u2 = 
1. 

The most curious feature of the relations shown in inserts A and B of Fig- 
ure 2 and B, C, and D of Figure 3 is the obvious discontinuity that occurred 
when E/E1 approached about 20 (In E/E1 N 3). This was observed when Ti 
became greater than ambient with increase in u2; consequently, it was only 
observed for systems, like those enumerated above, whose fillers had a Tg 
greater than ambient and, therefore, were hard. It is in this composition re- 
gion that elongation became less than 10W so that the reported values of E 
(Table I of this paper and polyblends I) were initial moduli. Consequently, 
the discontinuity reflected the abrupt decrease in the free volume of the 
blends as the filler itself began to dominate properties in these systems. In 
composition regions governed by eq. (7) in Figures 2 and 3, the elastomer was 
acting merely as a diluent in reducing moduli. 

The discontinuous increase in E and, therefore, in the modulus ratio E/E1 
had its origins in the free volume available to the polymeric filler a t  ambient 
temperature and to its volume fraction in the blend, UZ. The former effect 
can be expressed through the parameter Tg - T23, where Tg is the glass tran- 
sition of the filler and T23 is room temperature. Hardness of a polymer will 
increase somewhat with positive values of Tg - T23 but will approach a limit 
as the equilibrium free volume uf of the glass is reached.36 When Tg - T23 is 
negative, the filler will be relatively soft. In the polyblends under discussion, 
this represented the case of mixed rubbers, where Ti of the filler was less 
than room temperature and eq. (7) applied over all u2 (Fig. 2, inserts C and D, 
and Fig. 3, insert A). The relation between Tg - T23 and the value of k of eq. 
(7), as listed in Table 11, is shown in Figure 4, insert A, for VS-VC1 copoly- 
mers and DOP-PVC mixtures blended with Hycar 1411. The relation is 

(8) 
where Tg is the glass transition of the starting polymer, copolymer, or plasti- 
cized mixture. Values of the constants (Tg - T23)O and 6 are given in Table 
I11 for all of the polyblended systems studied. The triangle point in Figure 4, 
insert A, is the value of Tg - T23 and k for bulk PVC. The critical value of k, 
or In (E2/El)c, designated k,, where phase inversion became possible in any 
blended system, occurred near Tg - T23 N 0 (dashed line in the figure). 
This corresponded to a critical volume fraction for phase inversion, designat- 
ed uc, such that 

Tg - T23 = (Tg - T23)0 + 6k 
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uc = [(Tg - T23)0/b]/k (9) 

Consequently, using uc and eq. (7), it was possible to compute the modulus 
ratio EJEI and the critical modulus E, necessary to indicate the onset of 
phase inversion for any of the filled systems under investigation. For tension 
modulus, these values are given in Table 111. 

A similar relation was obtained for torsional moduli at  room temperature, 
Et. However, the relationship between In (Et/Etl) and u2 was not always lin- 
ear (the curve being concave downward) so that k’ values, obtained by com- 
puter using eq. (7) ,  were sometimes forced average values. This introduced 
more error into the parameters of eqs. (8) and (9) (primed quantities in Table 
111) than had been found for the corresponding 100% modulus computations. 

Values of CY and a’ and the derived u, and u,’ values were similar for each 
blend system in Table 111; however, (Tg - T23)o were somewhat variable. 
Considerable variability existed for individual values of both E, and E,’ in 
the table. The variability reflects failure of eqs. (7) ,  (8), and (9) to predict a 
common critical modulus marking phase inversion for all of the systems. 
However, the averaged values of E, and E,’ are reasonable. Their difference 
is in the expected direction for the two types of modulus.2 

Equation (7) expresses the relation between the tensile modulus ratio, In 
(E/E1), and the volume fraction of filler, u2, only in the composition range 
where both phases were soft and rubber-like. Consequently, it expresses the 
additive effect of the bulk viscosity of the mixed rubber phases. An equa- 
tion, eq. (lo), that adequately computed the modulus ratio for the entire 
composition range made use of eq. (9) to calculate the critical volume uc for 
the onset of the discontinuous increase in modulus and then estimated the 
tension modulus ratios for the inverted-phase region at  u2 > u,: 

In EIEI = In [u,(E,/Ed + u b ( E z / E d ]  - k [ u ,  + v z ( l  - u, /u~>]  + ku2 (10) 

When u2 =S u,, E, = E, and when uz > u,, E, remains E,. When u2 < u,, u2 

remains uc in eq. (11): 

ub = ( U 2  - Uc)/(l .O - 0,) (11) 

u, = 1.0 - ub (12) 

The critical volume uc is from eq. (9), and E, is taken as E, = E = Elekuz for 
u2 < u, and E, = Elekvc for u2 > u,. These quantities are given in Tables I to 
111. The dashed lines in Figures 2 and 3 show that eq. (10) was reasonably 
successful in describing both the mixed-rubber region below u, and the rapid 
rise in modulus ratios above this critical volume fraction a t  which the phases 
seem to invert. Equation (10) stresses the importance of a critical modulus 
of the filler-matrix system necessary to initiate the onset of phase inversion. 
It also expresses the importance of the relative hardness of the filler as deter- 
mined by its plasticizer content in increasing u,. When u, becomes 21.0, 
mixed rubbers prevail, Ti is below ambient, and the single-parameter eq. (7) 
can describe the moduli a t  all uz values. 

Equation (10) is really an equation expressing a discontinuity. Conse- 
quently, it can be decomposed into its two-component expressions. Thus, 
when the rubber phase was continuous, u 2  < u,, series response appeared to 
prevailyJ4 and 
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Fig. 4. (a) Relation between Tg - T23 and k of eq. (7): (0) VS-VCl copolymers; (x) DOP- 
PVC mixtures; (A) PVC. The nitrile rubber is Hycar 1411. Dashed line marks Tg - Tz, = 0 
above which phase inversion is possible. (b) Observed torsional moduli ratios for starting poly- 
blend components versus the phase overlap region where viscoelastic properties depend on the 
geometric rule of mixtures. 

In (EIE1) = In (E,/E1) - k[u ,  + u2 - u,] + ku2 = ku2 (13) 
where in this region E, = E. In the overlap region, where u2 > u,, more par- 
allel behavior was prevailing, and 

In = In [u,(E,/Ed + ug(E2/Ed] (14) 
because the right-hand terms of eq. (10) cancel out in this region. It can be 
seen that, in spite of the observation of the previous papers,lV2 which de- 
scribed these systems as mechanically compatible, an incompatible region 
does exist whose range is a function of the initial hardness and ductility of the 
filler. The manner in which these effects influence torsional modulus will be 
considered next. Torsional moduli reflect the lowest strain state of the 
blends. Their analysis will be accomplished using a modification of the Ker- 
ner equation.27 This modification considers mixed phase behavior. 

The Torsional Modulus Ratio Et/Etl 

For purposes of describing the behavior of the torsional modulus ratio Et /  
Et l ,  the expressions for the upper and lower moduli ratios estimated by the 
Kerner equation27 can be recast ( H a l ~ i n ~ ~  and T ~ a i ~ ~ ) ,  yielding for the lower 
moduli ratios 

Et/Etl = ( 1  + ABu2)/(1- B u ~ )  (15) 
where, for spherical particles or for rigid filler particles of a random shape, 

A = (7 - 5 ~ 1 ) / ( 8  - 10~1)  = k, - 1.0 

B = (EtdEt1 - l ) / ( E t ~ / E t l  + A )  

Here, Poisson's ratio is v1 = 0.5. After phase inversion has occurred, 

Et/Et1 = ( 1  - B ' ~ z ) / ( l  + A'B'u~) (16) 
where A' = 1/A and B' = Et1/Et2 - l / (E t l /E t z  + A'). Equations (15) and 
(16) suffer in that conditions anticipating phase inversion are not considered. 
Nielsen has modified the equations for this ~ o n d i t i o n ~ - ~  by introducing a crit- 
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Fig. 5. Halpin-Tsai version, eqs. (16) and (17), of Kerner equation, eq. (4), as modified by 
Nielsen, eq. (18), fitted to polyblends of PVC and Hycar 1411. Ordinate is the torsional modulus 
ratio E t / E t l ;  abscissa is the volume fraction of PVC. Circles are experimental values. The 
range of mixed phases, 0.60, is from Fig. 4, insert B. Downward arrow is the critical average 
packing volume fraction u,‘ (Table 111); upward arrow is the midpoint of the fitted range. 

ical maximum volumetric packing fraction um as the essential parameter. 
With this modification, eqs. (15) and (16) now become, for the lower relation, 

EtIEtl = (1 + ABU2)/(1 - BJ/uz)  (17) 

with I) = 1 + [(l - um)/um2]u2. A similar insertion of J /  can be made in the 
numerator of eq. (16). 

N i e l ~ e n ~ - ~  considered that in the vicinity of urn, both phases would be con- 

. 
c 

w 

VZ 

Fig. 6. Halpin-Tsai version, eqs. (16) and (171, of Kerner equation eq. (41, as modified by Niel- 
sen, eq. (18), fitted to polyblends of Hycar 1411 and VS (0.207) VCl. Abscissa is the torsional 
modulus ratio Et/Etl;  ordinate is the volume fraction of polymeric filler, u2. Circles are experi- 
mental values. The range of mixed phases, 0.425, is from Fig. 4, insert B. Downward arrow is 
the average critical packing volume fraction uc’ (Table 111); upward arrow is the midpoint of the 
range. 
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VZ VZ 
Fig. 7. Approximate Kerner-Nielsen plots of torsional modulus ratio In (Et /&I) vs. volume 

fraction of polymeric filler, u2, for polyblends of PVC (A), VS (0.207) VCl (B), and VS (0.356 VCl 
(C), all with Hycar 1411 and VS (0.207) VCl with Hycar 1452P-50 (D). Downward arrow is the 
average critical packing volume fraction u,' (Table 111); upward arrow is the midpoint of the fit- 
ted range. The range is from Fig. 4, (B). 

tinuous in a narrow composition range called, for convenience, the overlap re- 
gion. In the overlap region, he assumed4 that the geometric rule of mixtures 
would prevail, so that 

log Et = uu log Etu + U L  log E ~ L  (18) 
In this equation, u u  and UL are volume fractions of rigid material given by the 

v, 
Fig. 8. Approximate Kerner-Nielson plots of torsional modulus ratio In (Et /Et l )  vs. volume 

fraction of polymeric filler, up,  for polyblends of VS (0.356) VCl (A), DOP (0.207) PVC (B), both 
with Hycar 1452P-50, and VS (0.207) VCI with AN 25, unvulcanized (C), and vulcanized (D). 
Downward arrow is the average critical packing volume fraction uc' (Table 111); upward arrow is 
the midpoint of the range. The range was taken from Fig. 4, (B). 
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Kerner higher-moduli expression, eq. (16), and the lower moduli, eq. (17), re- 
spectively, in the overlap region. 

When eqs. (16) and (17) were used with u,’ (Table 111) to fit the experimen- 
tal data (Table I), the agreement was poor. The experimental overlap region 
(Fig. 1) was far too large to agree with the predicted range, and u,‘ did not 
correspond to the phase inversion region. A correlation was obtained empiri- 
cally (Fig. 4, insert B) of the observed range of the experimental overlap re- 
gion with Et2IEt1 for the experimental data in Table I (using Hycar 1411) and 
some data from Table I11 for VS (0.356) VCI. The appropriate overlap re- 
gion was taken from this figure, and the limit of the range was assumed to 
represent the maximum volumetric packing fraction urn. With the aid of this 
quantity, the upper and lower modulus ratios of the modified Kerner equa- 
tion were constructed using eq. (17) and eq. (16) modified by t). The mixed- 
phase line was also drawn using eq. (18). The curves were then graphically 
shifted for the best approximate fit to the experimental data, keeping the 
overlap region the same. Using the values of 1 - urn and urn obtained after 
curve shifting, which were the initial and final volume fractions of the mixed- 
phase range, the modified Nielsen-Kerner equations, eqs. (16) and (17), were 
again used to reconstruct the upper and lower sets of modulus ratios. The 
mixed phase line, eq. (18), now fell close to the experimental data as can be 
seen in Figures 5 and 6. It may be observed that the midpoint of the fitted 
range in both figures lies close to vc’, computed from eq. (9) from data in 
Table I11 (arrows in the figure). Consequently, with torsional moduli data, 
u,‘ appeared to denote the average composition of the mixed-phase contribu- 
tion rather than the onset of phase inversion, as with the 100% modulus ratios 
discussed in the section above. The sensitivity of torsional moduli to low- 
strain states appears to be responsible for the behavior differences. 

The rather laborious method just described for exactly fitting experimental 
data to the Kerner equation in Figures 5 and 6 was replaced (Figs. 7 and 8) by 
an approximate method having more predictive power. With Y fixed as 0.5 
and urn taken as unity for both relations, the Halpin-Tsai parameters used for 
all calculations became, for the lower curve, A = 1.50, B = 0.9950, and AB = 
1.493; and, for the upper curve, A’ = 1/A = 0.6667, B’ = 0.9970, and A’B’ = 
0.6647. Using appropriate starting material moduli taken from the previous 
paper,’ the curves shown in Figures 7 and 8 were thereby constructed. With 
u: of Table I11 taken as the midpoint of the overlap range for each blended 
system (the range from Fig. 4, insert B), a line was drawn from the initial u2 

of the lower curve to the terminal u 2  of the range in the upper curve. This 
procedure can be seen (Fig. 7, inserts A and B) to give almost as good a fit as 
the more exact procedure discussed above (Figs. 5 and 6). The balance of the 
data in the figures shows reasonably good fit  of the theoretical curves to the 
experimental data, regardless of the type of polyblend. In cases where uc‘ 
was greater than the midpoint of the range (Fig. 4, insert B), the upper curve 
u2 was taken as unity (Fig. 7, insert D and Fig. 8, inserts B and C). In Figure 
8, insert D, representing vulcanized polycomposites, the procedure outlined 
above failed; the overlap line was adjusted graphically although the proper 
range was maintained. 

In general, these drastic modifications of the original Kerner equation27 
were able to describe the viscoelastic behavior with respect to blend composi- 
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tion of the polyblend systems studied in these papers. That is, the experi- 
mental data for systems of strongly contrasting moduli lay close to both 
bounds predicted using variational principles or assumed isotropic disper- 
sions by Hashin and Shtrikman,2g-31 but only over a limited range of experi- 
mental volume fractions. In a large range of filler volume fractions, apparent 
continuity of both phases was present. This was significant because the 
moduli of the fillers used in this work could be reduced a t  will by plasticiza- 
tion, either internal or external. The general effect of increased filler plasti- 
cization was to reduce the range of mixed-phase contributions to viscoelastic 
response and to shift the ranges to higher volume fraction of filler. When the 
Tg of the polymeric filler fell below room temperature, the lower Kerner rela- 
tion was closely followed (Fig. 7, insert C and Fig. 8, insert A). 

Mechanical compatibility, whose recognition was based on shifting Ti and 
general mechanical behavior, was shown to be followed by all of the blended 
systems in the previous papers. Clearly, this criterion was really only appli- 
cable when the data lay close to this lower Kerner relation, i.e., when Tg - 
T23 of eq. (8) became negative or where the NBR content was large in the 
other systems. In systems where the difference Tg - T23 was positive and 
where the NBR content was relatively low (Table I), phase incompatibility 
eventually resulted. Consequently, through much of the composition range 
of those blends filled by hard inclusions, mixed-phase contributions deter- 
mined the mechanical behavior. Both mechanical and thermal spectroscopy 
now lead to the conclusion that the present polyblend systems are incompati- 
ble, whether reinforced with vinyl copolymers or with externally plasticized 
PVC. The illusion of molecular compatibility based on viscoelastic data2 re- 
sulted from significant contributions from both ultrafinely dispersed mixed 
phases. This suggests a morphology of discrete interlocking microdisper- 
sions. This morphology would cause Ti to shift with composition as in true 
molecular mixing. However, the broadness of the individual isochronal mod- 
ulus-temperature curves, observed as NBR content changed in any blended 
system12 provides clear evidence that the environment of the domain-matrix 
stress fields were supermolecular. This gives rise to gradual inflections in the 
modified Kerner-Nielsen plots of Figures 5-8. In truly molecularly mixed 
systems, on the other hand, only a very narrow overlap region, denoting phase 
inversion, is en~ountered.~ Isochronal curves having large slopes a t  Ti then 
characterize the viscoelastic data. This was found for truly molecularly dis- 
persed amorphous inter polymer^.^^ 

It is pertinent that poly(viny1 chloride), molecularly plasticized by mono- 
meric DOP but containing macromolecular, out-of-phase reinforcing crystal- 
lites, produced anomalously broad isochronal modulus-temperature curves, 
indicating only partial molecular mixing.3M0 It is suggested that the type of 
mixing characteristic of polyblends of vinyl chloride containing polymers or 
plasticized mixtures blended with nitrile rubbers be classified as restricted 
molecular mixing. This classification serves to differentiate their type from 
the type shown by polycomposites whose viscoelasticity data exhibit two loss 
maxima. Systems like the latter are clearly incompatible, regardless of which 
phase constitutes the matrix.638 Incompatibility in polycomposites seems to 
result from using nonductile fillers such as polystyrene, poly(methy1 methac- 
rylate), or polyacrylonitrile. The effect appears to be relatively insensitive to 
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the type of polycomposite6J5-17Jg~20~35~41-45 and details of their morpholo- 
gy,8J5*35,46*47 but exceptions are to be noted.19,48,49 However, unfavorable 
polar interactions were also lacking in the cited systems; favorable polarity 
was ~ometirnes,6*~~ but not a l w a y ~ , ~ ~ ? ~ ~  found in compatible polycomposites 
containing PVC. 

Empirical Torsional Modulus-Temperature Relations 

The discussion just completed has shown that the appearance of mechani- 
cal compatibility depends on the difference between Tg of the blend filler and 
the temperature of observation at  ambient temperature T23. This indicates 
that whenever the temperature of observation is below Tg of the filler of any 
polyblend, mechanical incompatibility will result a t  some volume fraction of 
inclusion above 1 - u,. On the other hand, when the temperature of obser- 
vation is above Tg of the particulate filler, the systems should exhibit the be- 
havior of mixed rubbers and become apparently compatible. However, true 
molecular compatibility should never be encountered in any polyblend, re- 
gardless of temperature, because of the high probability of positive free ener- 
gies of mixing between polymer  pair^.^^^^ In further support of these ideas, 
when selected mixed rubbers were cooled to -2OoC, all tested samples exhib- 
ited stress whitening, presumably because of craze development in the poly- 
meric filler phase. A special designation of restricted molecular mixing was, 
therefore, proposed for polycomposite systems like those studied in this work. 

In this section and those that follow, an approximate analysis of isochronal 
moduli-temperature curves is presented which embodies the principles out- 
lined above concerning the effect of plasticization on filler modulus and com- 
posite morphology. This analysis avoids the assignment of constants to as- 
sumed mechanical models for mixing as in the method of T a k a ~ a n a g i . ~ * ~ ~ > ~ ~  
This method suffers in that constants assigned to the parameters of each 
model can fi t  experimental data with equal facility but lead to opposing in- 
terpretation of the extent of parallel and series character in a given poly- 
blend. The discussion below avoids this problem. However, only a qualita- 
tive approximation of actual behavior is intended. 

Because Tgl and T f  are the approximate temperatures where the nitrile 
rubber underwent its glass transition,2 the temperature region between Tgl 
and Ti represents the behavior of an increasingly soft elastomer filled by a 
hard filler. Beyond Ti, both phases became rubbery and the modulus ratio 
was expected to follow eq. (7) with k N In (EzlE1). In the temperature inter- 
val T;-Tgl, the moduli gradually decreased from some high value at  Tgl to 
14,500 psi a t  Ti. The effect of a decreasingly efficient filled rubber in the 
temperature interval Ti-Tgl can be described as 

E ( T )  = (T  - TgJTi - Tg1)ETi + [1 - (T - Tg1/Ti - Tgl)]E~gl (19) 

where E T ~  = 14,500 psi = 1.0 X lo9 dynes cm2, ETgl = 500,000 psi = 3.45 X 
1Olo dynes/cm2 and T = Tgl < T < Ti. Temperatures were in OK. The in- 
flection temperature Ti was calculated from eq. (1) and the constants of 
Table I1 of the previous paper.2 Values of Tg for the three elastomers2 (Tgl)  
were: Hycar 1411, -23OC; Hycar 1452P50, -43OC; and AN 25, -51OC. 
Equation (19) was used to estimate modulus-temperature curves in the tem- 
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perature region between Tgl and Ti; the results will be discussed below. 

proportional to the viscosity ratio of the Williams-Landel-Ferry 
The torsional modulus ratio from Ti to Ti + 100, designated E t / E t ~ ; ,  was 

(20) 
-17.44(T - T,) 
51.6 + (T - Tg) log (E,/E,T,) = c log (?/?,ITg) = c log aT = c 

for moduli above Ti for every polyblend system studied, through log C ~ T  of 
about -6. For the nitrile rubbers themselves, the rate of change of modulus 
ratio became very small because of the effect of the rubbery plateau. In fact, 
the relation between log (E, /E,T;)  and Ti for the nitrile rubbers followed 

(21) 

These two relations can be seen graphically in Figure 9. Values of the con- 
stants C, C’, and CO are given in Table I11 for all of the polyblend systems 
studied in this work. Consequently, for a limited T - Ti (not exceeding 
looo 56a), the WLF equation could be invoked to compute the ratio and, thus, 
the torsional modulus as a function of temperature above Ti. However, the 
impact of the nitrile rubber network phases and the relatively smaller effect 
of entanglement c o ~ p l i n g ~ ~ ~ , ~  are neglected using eq. (20). To estimate these 
effects, eq. (22) was developed: 

(22) 

log (E,/E,Ti) = co + C’ log CYT. 

E(T) = ETi[e2.303(7 1% aT ] + Fw1[ETi(e2.303Co+C’ log a ~ ) ]  

F = [(T - Ti)/lOO] log ( w ~ Z C  + [ w ~ / ( T  - Ti]Ze) 

The factor F is given as 

(23) 

where 2, = MC/Mo, the ratio of molecular weight between crosslinks of the 
rubber to the molecular weight of the chain unit, and 2, is the same ratio for 
entanglement coupling of both copolymer and elastomer units. In eq. (22), 
the term a t  the left computes modulus by the WLF relation; the terms at  the 
right attempt to modify these computed moduli to qualitatively account for 
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Fig. 10. Torsional modulus-temperature curves for various polyblends of Hycar 1411. The 
polymeric filler used was: (A), PVC; (B), VS (0.207) VCI; (C), VS (0.356) VC1; and (D), DOP 
(0.207) PVC. The weight fraction of NBR was, right-hand pair of curves, 0.25; left-hand pair, 
0.50, except in (A), where the NBR in the left-hand pair was 0.58. Solid lines calculated accord- 
ing to eqs. (19), (22), and (23); dashed lines are experimental. 

the gradual increase in importance of the rubbery phase as temperature in- 
creases. The form of the factor F specifies an increasing contribution of the 
nitrile rubber phase and a decreasing contribution of entanglement coupling 
of the polymer as temperature increases to a limit not exceeding T - Ti of 
1oooc. 

Cognizance was taken in the use of eqs. (22) and (23) of the considerable 
theoretical difficulties in estimating quantitatively the magnitudes of the 
modulus and the degree of network perfection present in the rubbery modu- 
lus region of even simple polymers and The entanglement 
terms in eqs. (22) and (23) are intended only as empirical correlation con- 
stants. The purpose of the equations was to disengage and describe the main 
molecular contribution of the domains to modulus behavior under the influ- 
ence of changing temperature. Success in the use of these expressions, there- 
fore, can only be gauged by their fit to the experimental data. To this end, 
the quantity 2, was assumed to be 1000 in all calculations, and 2, was as- 
signed the value of 100 for systems using Hycar 1411 and 500 for systems 
using the less crosslinked Hycar 1452P-50.l These assignments were consid- 
ered reasonable in view of literature values.56c 

Calculated modulus-temperature curves (solid lines) are compared with a 
selection of experimental curves (dashed lines) in Figures 10 and 11 for vari- 



POLYBLENDS 2775 

I o5 

I 0' 

10' 

I 0' 

- 
v) 

w- 

10' 
I 0' 

I 0' 

a 10' 

10' 

I 
v) 

w 

lo' -50 0 50 100 
T. 'C 

Fig. 11. Torsional modulus-temperature curves for various polyblends of Hycar 1452P-50. 
The polymeric filler used was: (A), PVC; (B), VS (0.207) VCl; (C), VS (0.356) VC1; and (D), 
DOP (0.207) PVC. The weight fraction of NBR was, right-hand pair of curves, 0.25, and left- 
hand pair, 0.50. Solid lines were calculated according to eqs. (19), (22), and (23); dashed lines 
are experimental. 

ous polyblend systems. Each insert contains two curves describing two dif- 
ferent NBR concentrations for a single pictured polyblend system. The data 
in Figure 10 are for Hycar 1411 polyblends; those in Figure 11, for Hycar 

The portion of the curves between Tgl and Ti, calculated using eq. (19), are 
plainly delineated in both figures. The form of the equation expressed the 
trends of modulus in this region; a better fit could have been obtained from a 
more realistic assignment of E T ~ ~  and by using a somewhat lower Tgl for 
Hycar 1411. The curves suggest that additive mixed-phase contributions of 
a hard (500,000 psi) and a relatively soft phase (14,500 psi) determined mod- 
ulus in this region for all systems. Inflection temperatures were accurately 
given12 shifting each curve down the temperature scale with increasing NBR 
as illustrated. For the temperature interval in the immediate vicinity of Ti 
(to T-Ti N 25O), the increased free volume becoming available to the hard 
domains in this region alone determined the moduli. A t  higher tempera- 
tures, the increasing influences of the elastic and entanglement network were 
fairly well anticipated by eqs. (22) and (23). While a better fit could have 
been obtained by adjusting Z, and Z,, no useful purpose would have been 
served by this procedure. 

A number of the required features of the mechanical properties of the ex- 
perimental polyblends are reflected in the calculated curves. The broadness 
of the curves, which increased as the hardness of the filler increased, was pre- 
dicted (compare insert A with inserts C and D, Fig. 10, and insert A with in- 
serts C and D, Fig. 11). This broadness depends on the shifting of Ti with 
filler plasticization, while Tgl stays constant. This provides evidence for dis- 

1452P-50. 
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Crete phase microdispersity as was discussed above. The magnitude of the 
plateau region increased as NBR increased in VS-VC1 filler polyblends (in- 
serts B and C, Fig. 10, and inserts B and C, Fig. 11) but stayed relatively con- 
stant for PVC and DOP-PVC filled systems (inserts A and D, respectively, in 
both figures). The calculated curves reflected this behavior. The superior 
high temperature properties of these latter filled systems compared to those 
using VS-VC1 copolymers is also illustrated. Finally, the modulus behavior 
at  high temperature depended strongly on Z,, as might be expected (compare 
Figs. 10 and 11). It may be concluded that increasing temperature changes 
each polyblend from an initial state of mixed glasses, through a filled elasto- 
mer region featuring mixed parallel and series response, to mixed elastomers 
above Ti. A t  high temperatures, the degree of network perfection and the 
bulk viscosity of liquid-like dispersions determined mechanical properties. 
The several empirical equations just described appear to reflect the experi- 
mental trends closely enough to describe the qualitative molecular responses 
to temperature changes occurring in the polyblends. 

SUMMARY AND CONCLUSIONS 
Various theoretical equations derived to describe the viscoelasticity of 

filled elastomers and other expressions useful for. polycomposites exhibiting 
both parallel and series response to deformation were tried on the polyblends 
of these investigations. The properties of these polyblends were affected by 
NBR content and by the extent of the plasticization of the particulate filler 
used. New mechanical and viscoelastic data were introduced to provide 
greater experimental detail for compositions having reduced NBR content. 
Several of the theoretical treatments failed. A substantial modification of 
the Kerner equation, proceeding from expressions accounting for phase in- 
version, finally proved useful in describing torsional modulus ratios as filler 
composition increased. Tensile modulus ratios (100%) followed a different 
empirical expression, however. 

A critical volume fraction, associated with the composition region where 
phase inversion occurred, was an essential parameter for relating both bypes 
of modulus to composition. The range of mixed-phase contributions de- 
creased as Tg of the added polymer decreased and shifted to higher polymer 
compositions, finally vanishing when the Tg of the inclusion fell below room 
temperature. The latter systems alone, by following the lower Kerner rela- 
tion, suggested completely mechanically compatible behavior. The main 
conclusions of this work were that these systems represent a class of polycom- 
posite materials exhibiting restricted molecular mixing. Discrete intermin- 
gling macromolecular phases seem to constitute a morphology permitting al- 
most additive phase response to deformation. This intermingling type of 
morphology was postulated to account for isochronal curve broadening and 
still to allow for the observed shifting of the mechanical glass transition tem- 
perature with changing composition. No evidence was found for true molec- 
ular compatibility. The contribution of temperature to the properties of the 
polyblends was also shown to be an analog of the composition trends. 

The authors express their special thanks to Mrs. Ruth D. Zabarsky for the computer calcula- 
tions used in this work. Reference to brand or firm name does not constitute endorsement by 
the U S .  Department of Agriculture over others of a similar nature not mentioned. 
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